

Legal Framework for the Successful Network Integration of Renewables – the Example of the German EEG and EnWG

Beijing, 21 February 2011

Prof Dr Hartmut Weyer Clausthal University of Technology and Energy Research Center of Lower Saxony

Legal Framework for Successful Network Integration of Renewables

Outline

- Introduction: Success of renewables and consequences
- Example 1: Balancing markets
- Example 2: Development of the transmission networks
- Example 3: Restructuring of the distribution networks
- Conclusions

Success of renewables and consequences

Power generation from renewable energy sources in Germany (in % of gross electricity consumption)

- **2009:** 16.4%
- Target 2020: 35 %
- Target 2030: 50 %
- Target 2050: 80 %

Consequences

- Increasing volatility of power generation (wind, solar)
- New generation sites (esp. wind onshore and offshore)
- Increase in decentralized generation (lower capacity and lower voltage)

Success of renewables and consequences

> Need for adaptation of the legal framework

> 3 examples from the German experience

- Balancing markets
- Development of the transmission networks
- Restructuring of the distribution networks

Example 1: Balancing markets

Problem analysis

Current configuration of the German balancing system

- Mainly large conventional (coal, gas, oil) power plants
- Nuclear power plants
- Difficulties to ensure sufficient balancing capacity in a system with increased renewable power generation
 - Necessity to use renewable power generation for balancing
 - Attraction of additional balancing capacities (pump storage, gas-fired power plants)

Example 1: Balancing markets

Access to balancing markets

General technical and economic considerations

- Degree of reliability ("prequalification")
- Flexibility (quickness of reaction)
- Batch size (minimum capacity)
- Duration of availability

Legal adaptations discussed

- Diminished batch size and duration requirements
- Admissibility of "pooling" of small plants
- ➔ better access for decentralized generation

Example 1: Balancing markets

Access to balancing markets

Specific preconditions for renewables

- Distinction between directly marketed renewables and renewables marketed at feed-in tariffs
- Distinction between positive and negative balancing power

Legal adaptations discussed

- Markets for positive balancing power: Admission only of directly marketed renewables
 pressure to change to direct marketing of renewables
- Markets for negative balancing power: Admission of renewables marketed at feed-in tariffs is controversial

Example 2: Development of the transmission networks

Problem analysis

Current situation

- Power plants close to load (in the west and south of Germany)
- Limited transmission capacity (extra-high voltage)
- Difficulties to ensure sufficient transmission capacity in the future
 - Wind power generation is built mainly in the north and northeast
 - Presumably 3.600 km of new transmission lines needed
 - Great public opposition (conservation of nature, reduced value of premises, no benefits for communities concerned)
 - TSOs (Transmission System Operators) want higher return on investment

Example 2: Development of the transmission networks

Legal adaptations of the planning process

Common demand planning of TSOs

- EU law from 2011 onwards demands 10 year plans of TSOs
- Possibilities of energy regulators to comment and demand changes of plans

>Authorization of transmission routes in Germany

- Statutory confirmation of demand for the most important new power lines (24 extra-high voltage lines) since 2009
- Streamlining of authorization procedures (adaptations in 2006, 2009, 2011)
- Increased federal planning competences discussed
- Increased financial incentives for TSOs discussed
- Financial incentives for communities concerned in discussion

Example 2: Development of the transmission networks

Legal adaptations regarding technical aspects

Extra-high voltage underground cables

- More expensive, but better public acceptance
- Regulators have to allow costs for partial undergrounding on 4 pilot power lines (since 2009); authorities may oblige TSOs to build underground cables (since 2011)
- Costs of undergrounding will be shared Germany-wide
- Extra-high voltage DC power lines
 - DC power lines to be tested on pilot routes
 - Regulators have to allow costs for DC power lines

Example 3: Restructuring of the distribution networks

Problem analysis

Current situation

- Networks built to distribute the electricity fed into the transmission networks by large conventional or nuclear power plants at extra-high voltage
- Size of distribution networks adjusted to customary current flows
- Difficulties to handle decentralized and volatile power generation
 - Grid congestion
 - Adjustment of power consumption to generation
 need for more detailed metering of consumers and for load management

Example 3: Restructuring of the distribution networks

Legal adaptations regarding network congestion

Precedence of power generated from renewables

- Explicit duty of DSOs (Distribution System Operators) to develop their networks to accommodate renewables
- Still congestion cases are increasing → compensation for renewable power plants (since 2009)
- Possibility for the network operators to adjust renewable power generation (plants > 100 MW, discussed for solar energy)
- Costs of network development
 - Costs of distribution network checked by benchmarking → disadvantage for DSOs with strong decentralized generation
 - New parameter taking account of decentralized generation (since 2010); also for next benchmarking exercise 2012/2013?

Example 3: Restructuring of the distribution networks

Legal adaptations regarding consumption

Smart metering

- "Smart meters": showing real consumption over time
- Duty of DSOs to install smart meters at least in new buildings (since 2010; further assessment 2012)

Load management

- Possibility to influence consumption time by differentiated tariffs, external decisions on consumption time etc.
- Could also be done by DSOs → whether this should be the task of DSOs is being discussed
- Practical importance e.g.: constraints of time for charging of electrically powered vehicles ("e-mobility")

Conlusions

The success of renewables makes further adaptations of the legal framework necessary

- > Examples for adaptations of the legal framework were
 - Balancing markets
 - Development of the transmission networks
 - Restructuring of the distribution networks

> Other areas of adaptation in Germany are e.g.

- Market design for energy bought at feed-in tariffs (adaptations 2009, 2010) and for direct marketing of renewable energy (adaptations 2009, others in discussion for 2012)
- Requirements for renewable power plants to provide network services like voltage and frequency control (2009 for wind, in discussion for other renewables)

Thank you for your attention!

Prof Dr Hartmut Weyer hartmut.weyer@tu-clausthal.de

Energy Research Center of Lower Saxony in Goslar

Institute of German and International Mining and Energy Law, Clausthal University of Technology

